ПATIBIA UПIVERSITY
OF SCIEПCE AПD TECHחOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science ; Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 6
COURSE CODE: CLS601S	COURSE NAME: CALCULUS 2
SESSION: JUNE 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	DrV. KATOMA
MODERATOR:	Dr S. NEOSSI NGUETCHUE

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [25 Marks]

1.1 Evaluate the integral $\int_{0}^{\pi / 3} \sqrt{1+x^{3}} d x$ by Simpson's rule, using 6 intervals
1.2 Evaluate $\int \cos ^{4}(2 t) d t$
1.3 Solve $\int \frac{d z}{z^{2}-A^{2}}$

Question 2 [25 Marks]

2.1 Find the equation of the tangent line(s) to the following set of parametric equations at the given point. $x=2 \cos (3 \mathrm{t})-4 \sin (3 \mathrm{t}), \mathrm{y}=3 \tan (6 t)$ at $t=\frac{\pi}{2}$
2.2 Find the Taylor series of $f(x)=\cos (x)$ at $x=0$
2.3 Determine the Taylor Series of $\mathrm{f}(\mathrm{x})=7 x^{2}-6 x+1$ about $x=2$.

Question 3 [25 Marks]

3.1 Sketch the parametric curve for the following set of parametric equations. $x=5 \cos t, \quad y=2 \sin t \quad 0 \leq t \leq 2 \pi \quad$ Clearly indicate direction of motion.
3.2 For the following power series, determine the interval and radius of convergence.
$\sum_{n=0}^{\infty} \frac{1}{(-3)^{2+n}\left(n^{2}+1\right)}(4 x-12)^{n}$
3.3 The polar coordinates of a point are $(-5,0.23)$. Determine the Cartesian coordinates for this point.

Question 4 [25 Marks]

4.1 Let $y=(x+2)^{\frac{1}{2}}$, set up but do not evaluate the integral for the arc length.
4.2 Determine the surface area of the solid obtained by rotating $y=\sqrt{9-x^{2}},-2 \leq x \leq 2$ about the x-axis.
4.3 Determine the surface area of the solid obtained by rotating $y=\sqrt[3]{x}, \quad 1 \leq y \leq 2$

